Macro Processors 189

NAMTAB DEFTAB
L]
° L]
® []
* L]
L]
. / RDBUFF &INDEV, &BUFADR, &RECLTH
CLEAR X
RDBUFF | oo
CLEAR A
: CLEAR S
. +LDT #4096
TD =X'?1’
JEQ -3
RD =X'?1’
COMPR A.S
JEQ *+11
STCH ?2,X
TIXR T
JLT . *-19
STX 23
—¥| xexp
ARGTAB (a)
1] Fi
2| BUFFER
3| LENGTH
{b)

Figure 4.4 Contents of macro processor tables for the program in
Fig. 4.1: (a) entries in NAMTAB and DEFTAB defining macro RDBUFF,
(b) entries in ARGTAB for invocation of RDBUFF on line 190.

called to set up the argument values in ARGTAB and expand a macro invoca-
tion statement. The procedure GETLINE, which is called at several points in the
algorithm, gets the next line to be processed. This line may come from DEFTAB
(the next line of a macro being expanded), or from the input file, depending
upon whether the Boolean variable EXPANDING is set to TRUE or FALSE.
One aspect of this algorithm deserves further comment: the handling of
macro definitions within macros (as illustrated in Fig. 4.3). When a macro defini-
tion is being entered into DEFTAB, the normal approach would be to continue
until an MEND directive is reached. This would not work for the example in

190

System Software

begin {macro processor}
EXPANDING := FALSE
while OPCODE # ‘END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND .
else if ‘OPCODE = ‘MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

procedure DEFINE
begin
enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL :=1
while LEVEL > 0 do
begin
GETLINE
if this is not a comment line then
begin _
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = ‘MACRO’ then
LEVEL := LEVEL + 1
else if OPCODE = 'MEND’ then
LEVEL := LEVEL - 1
end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of defimition
end {DEFINE}

Figure 4.5 Algorithm for a one-pass macro processor.

Macro Processors

procedure EXPAND
begin)
EXPANDING := TRUE

get first line of macro definition {prototype} from DEFTAB

set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end (while}
EXPANDING := FALSE
- end {EXPAND}

procedure GETLINE

begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positional notation
end {if}
else

read next line from input file
end {GETLINE}

Figure 4.5 (cont'd)

Fig. 4.3, however. The MEND on line 3 (which actually marks the end of the
—definition of RDBUFF) would be taken as the end of the definition of MACROS.
To solve this problem, our DEFINE procedure maintains a counter named
LEVEL. Each time a MACRO directive is read, the value of LEVEL is increased
by 1; each time an MEND directive is read, the value of LEVEL is decreased by 1.
When LEVEL reaches 0, the MEND that corresponds to the original MACRO
directive has been found. This process is very much like matching left and right
parentheses when scanning an arithmetic expression.

You may want to apply this algorithm by hand to the program in Fig. 4.1
to be;sure you understand its operation. The result should be the same as
shown in Fig. 4.2.

Most macro processors allow the definitions of commonly used macro
instructions to appear in a standard system library, rather than in the source
program. This makes the use of such macros much more convenient.
Definitions are retrieved from this library as they are needed during macro
processing. The extension of the algorithm in Fig. 4.5 to include this sort of
processing appears as an exercise at the end of this chapter.

191

192

System Software

4.2 MACHINE-INDEPENDENT MACRO
PROCESSOR FEATURES

In this section we discuss several extensions to the basic macro processor func-
tions presented in Section 4.1. As we have mentioned before, these extended fea-
tures are not directly related to the architecture of the computer for which the
macro processor is written. Section 4.2.1 describes a method for concatenating
macro instruction parameters with other character strings. Section 4.2.2 discusses
one method for generating unique labels within macro expansions, which avoids
the need for extensive use of relative addressing at the source statement level.
Section 4.2.3 introduces the important topic of conditional macro expansion and
illustrates the concepts involved with several examples. This ability to alter the
expansion of a macro by using control statements makes macro instructions a
much more powerful and useful tool for the programmer. Section 4.2.4 describes
the definition and use of keyword parameters in macro instructions.

4.2.1 Concatenation of Macro Parameters

Most macro processors allow parameters to be concatenated with other char-
acter strings. Suppose, for example, that a program contains one series of vari-
ables named by the symbols XA1, XA2, XA3, ..., another series named by XB1,
XB2, XB3, ..., etc. If similar processing is to be performed on each series of vari-
ables, the programmer might want to incorporate this processing into a macro
instruction. The parameter to such a macro instruction could specify the series
of variables to be operated on (A, B, etc.). The macro processor would use this
parameter to construct the symbols required in the macro expansion (XA1l,
XB1, etc.).

Suppose that the parameter to such a macro instruction is named &ID. The
body of the macrg definition might contain a statement like

LDA X&ID1

in which the parameter &ID is concatenated after the character string X and
before the character string 1. Closer examination, however, reveals a problem
with such a statement. The beginning of the macro parameter is identified by
the starting symbol &; however, the end of the parameter is not marked. Thus
the operand in the foregoing statement could equally well represent the char-
acter string X followed by the parameter &ID1. In this particular case, the
macro processor could potentially deduce the meaning that was. intended.
However, if the macro definition contained both &ID and &ID1 as parameters,
the situation would be unavoidably ambiguous.

Macro Processors

Most macro processors deal with this problem by providing a special con-
catenation operator. In the SIC macro language, this operator is the character —.
Thus the previous statement would be written as

LDA X&ID—1

so that the end of the parameter &ID is clearly identified. The macro processor
deletes all occurrences of the concatenation operator immediately after per-
forming parameter substitution, so the character — will not appear in the
macro expansion.

Figure 4.6(a) shows a macro definition that uses the concatenation operator
as previously described. Figure 4.6(b) and (c¢) shows macro invocation

1 suM MACRO &ID
2 LDA X&ID—1
3 ADD X&ID—2
4 ADD X&ID—3
5 STA X&ID—S
6 MEND
(a)
SuM A
LDA xal
ADD XA2
ADD XA3
STA XAS
(b)
SUM BETA
LDA XBETAL
ADD XBETA2
ADD XBETA3
STA XBETAS

(c)

Figure 4.6 Concatenation of macro parameters.

193

194

System Software N

statements and the corresponding macro expansions. You should work
through the generation of these macro expansioné for yourself to be sure you
understand how the concatenation operators are handled. You are also encour-
aged to think about how the concatenation operator would be handled in a
macro processing algorithm like the one given in Fig. 4.5.

4.2.2 Generation of Unique Labels

As we discussed in Section 4.1, it is in general not possible for the body of a
macro instruction to contain labels of the usual kind. This leads to the use of
relative addressing at the source statement level. Consider, for example, the
definition of WRBUFF in Fig. 4.1. If a label were placed on the TD instruction
on line 135, this label would be defined twice—once for each invocation of
WRBUFF. This duplicate definition would prevent correct assembly of the
resulting expanded program.

Because it was not possible to place a label on line 135 of this macro defin-
ition, the Jump instructions on lines 140 and 155 were written using the rela-
tive operands *-3 and *-14. This sort of relative addressing in a source
statement may be acceptable for short jumps such as “JEQ *-3.” However, for
longer jumps spanning several instructions, such notation is very inconve-
nient, error-prone, and difficult to read. Many macro processors avoid these

_problems by allowing the creation of special types of labels within macro

instructions.

Figure 4.7 illustrates one technique for generating unique labels within a
macro expansion. A definition of the RDBUFF macro is shown in Fig. 4.7(a).
Labels used within the macro body begin with the special character $.
Figure 4.7(b) shows a macro invocation statement and the resulting macro
expansion. Each symbol beginning with $ has been modified by replacing $
with $AA. More generally, the character $ will be replaced by $xx, where xx
is a two-character alphanumeric counter of the number of macro instructions
expanded. For the first macro expansion in a program, xx will have the value
AA. For succeeding macro expansions, xx will be set to AB, AC, etc. (If only
alphabetic and numeric characters are allowed in xx, such a two-character
counter provides for as many as 1296 macro expansions in a single program.)
This results in the generation of unique labels for each expansion of a macro
instruction. For further examples, see Figs. 4.8 and 4.10.

The SIC assembler language allows the use of the character $ in symbols;
however, programmers are instructed not to use this character in their source
programs. This avoids any possibility of conflict between programmer-generated
symbols and those created by the macro processor.

60

70
75
80
85
90
95

30
35
40
45
50
55
60
65
70
75
80
85

90

RDBUFF

$LOOP

SEXIT

SAALOOP

SAAEXIT

MACRO
CLEAR
CLEAR
CLEAR
+LDT
TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX
MEND

RDBUFF

CLEAR
CLEAR
CLEAR
+LDT
D
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX

Macro Processors

&INDEV, &BUFADR, &RECLTH

(€5 I =

#4096
=X'&INDEV’
SLOOP
=X'&INDEV’
A,S

SEXIT
&BUFADR, X
T

SLOOP
&RECLTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR '

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

F1, BUFFER, LENGTH

X

A

S

#4096
=X'F1’
SAALOOP
=X'F1’
A, S
SAAEXIT
BUFFER, X
T
SAALOOP
LENGTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOF UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Figure 4.7 Generation of unique labels within macro expansion.

4

4.2.3 Conditional Macro Expansion

In all of our previous examples of macro instructions, each invocation of a
particular macro was expanded into the same sequence of statements. These
statements could be varied by the substitution of parameters, but the form of

195

196

System Software

25
26
27
28
30
35
38
40
42
43
44
45
46
47
48
50
55
60
63
65
70
73
75
80
85
90
95

30
35
40
42
47
50
55
60
65
70
75
80
85
90

RDBUFF MACRO
IF
&EORCK SET
ENDIF
CLEAR
CLEAR
IF
LDCH
RMO
ENDIF
IF
+LDT
ELSE
+LDT
ENDIF
SLOOP ™D
JEQ
RD
IF
COMPR
JEQ
ENDIF
STCH
TIXR
JLT
SEXIT STX
MEND

RDBUFF

CLEAR
CLEAR
LDCH

+LDT
SAALOOP TD

JEQ

COMPR

STCH
TIXR

SAAEXIT STX

&INDEV, &BUFADR, &RECLTH, &EOR, &MAXLTH

(&EOR NE ‘')
1

X

A

(&EORCK EQ 1)
=X'&EOR’

A,S

(&MAXLTH EQ ' 7)

#4096
#&MAXTLTH

=X'&INDEV'’
SLOOP
=X'&INDEV'’
(&EORCK EQ 1)
A,S
SEXIT

&BUFADR, X
T

SLOOP
&RECLTH

@

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REG A

TEST FOR END OF RECORD
EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

F3,BUF,RECL, 04,2048

X

A
=X'04"
A,S
#2048
=X'F3’
SAALOOP
=X'F3’
A,S
SAAEXIT
BUF, X

SAALOOP
RECL

(b)

CLEAR LOOP COUNTER
SET EOR CHARACTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Figure 4.8 Use of macro-time conditional statements.

30
35
47
50
55
60
75
80
87
S0

30
35
40
42
45
50
55
60
65
70
75
80
85
90

$ABLOOP

SABEXIT

$ACLOOP

$ACEXIT

Figure 4.8

RDBUFF

CLEAR
CLLEAR
+LDT
D
JEQ
RD
STCH
TIXR
JLT
STX

RDBUFF

CLEAR
CLEAR
LDCH
RMO
+LDT
D
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX

(cont'd)

Macro Processors

OE, BUFFER, LENGTH, , 80

X

A

#80
=X'0E’
$SABLOOP
=X'0E’
BUFFER, X
T
$ABLOOP
LENGTH

(0

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH

TEST TNPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

F1,BUFF, RLENG, 04

X

A
=X’'04"
A,S
#4096
=X‘F1’
$ACLOOP
=X'F1’
A,S
$ACEXIT
BUFF, X
T
$ACLOOP
RLENG

(d)

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

the statements, and the order in which they appeared, were unchanged. A simple
macro facility such as this can be a useful tool. Most macro processors,
however, can also modify the sequence of statements generated for a macro
expansion, depending on the arguments supplied in the macro invocation.
Such a capability adds greatly to the power and flexibility of a macro
language. In this section we present a typical set of conditional macro expan-
sion statements. Other examples are found in the macro processor descriptions
in Section 4.4.

197

198

System Software

The term conditional assembly is commonly used to describe features such
as those discussed in this section. However, there are applications of macro
processors that are not related to assemblers or assembler language program-
ming. For this reason, we prefer to use the term conditional macro expansion.

The use of one type of conditional macro expansion statement is illustrated
in Fig. 4.8. Figure 4.8(a) shows a definition of a macro RDBUFF, the logic and
functions of which are similar to those previously discussed. However, this
definition of RDBUFF has two additional parameters: &EOR, which specifies a
hexadecimal character code that marks the end of a record, and &MAXLTH,
which specifies the maximum length record that can be read. (As we shall see,
it is possible for either or both of these parameters to be omitted in an invoca-
tion of RDBUFF.)

The statements on lines 44 through 48 of this definition illustrate a simple
macro-time conditional structure. The IF statement evaluates a Boolean
expression that is its operand. If the value of this expression is TRUE, the state-
ments following the IF are generated until an ELSE is encountered. Otherwise,
these statements are skipped, and the statements following the ELSE are gen-
erated. The ENDIF statement terminates the conditional expression that was
begun by the IF statement. (As usual, the ELSE clause can be omitted entirely.)
Thus if the parameter &MAXLTH is equal to the null string (that is, if the corre-
sponding argument was omitted in the macro invocation statement), the state-
ment on line 45 is generated. Otherwise, the statement on line 47 is generated.

A similar structure appears on lines 26 through 28. In this case, however,
the statement controlled by the IF is not a line to be generated into the macro
expansion. Instead, it is another macro processor directive (SET). This SET
statement assigns the value 1 to &EORCK. The symbol &EORCK is a macro-
time variable (also often called a set symbol), which can be used to store working
values during the macro expansion. Any symbol that begins with the character
& and that is not a macro instruction parameter is assumed to be a macro-time
variable. All such variables are initialized to a value of 0. Thus if there is an
argument corresponding to &EOR (that is, if &EOR is not null), the variable
&EORCK is set to 1. Otherwise, it retains its default value of 0. The value of
this macro-time variable is used in the conditional structures on lines 38
through 43 and 63 through 73.

In the previous example the value of the macro-time variable &EORCK
was used to store the result of the comparison involving &EOR (line 26). The
IF statements that use this value (lines 38 and 63) could, of course, simply have
repeated the original test. However, the use of a macro-time variable makes it
clear that the same logical condition is involved in both IF statements.
Examining the value of the variable may also be faster than repeating the orig-
inal test, especially if the test involves a complicated Boolean expression rather
than just a single comparison.

Mucro Processors

Figure 4.8(b—d) shows the expansion of three different macro invocation
statements that illustrate the operation of the IF statements in Fig. 4.8(a). You
should carefully work through these examples to be sure you understand how
the given macro expansion was obtained from the macro definition and the
macro invocation staiement.

The implementation of the conditional macro expansion features just
described is relatively simple. The macro processor must maintain a symbol
table that contains the values of all macro-time variables used. Entries in this
table are made or modified when SET statements are processed. The table is
used to look up the current value of a macro-time variable whenever it is
required.

When an [F statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If the value of this expression is
TRUE, the macro processor continues to process lines from DEFTAB until it
encounters the next ELSE or ENDIF statement. If an ELSE is found, the macro
processor then skips lines in DEFTAB until the next ENDIF. Upon reaching the
ENDIF, it resumes expanding the macro in the usual way. If the value of the
specified Boolean expression is FALSE, the macro processor skips ahead in
DEFTAB until it finds the next ELSE or ENDIF statement. The macro processor
then resumes normal macro expansion.

The implementation outlined above does not allow for nested IF struc-
tures. You are encouraged to think about how this technique could be modi-
fied to handle such nested structures (see Exercise 4.2.10).

It is extremely important to understand that the testing of Boolean expres-
sions in IF statements occurs at the time macros are expanded. By the time the
program is assembled, all such decisions have been made. There is only one
sequence of source statements [for example, the statements in Fig. 4.8(c)], and
the conditional macro expansion directives have been removed. Thus macro-
time IF statements correspond to options that might have been selected by the
programmer in writing the source code. They are fundamentally different
from statements such as COMPR (or IF statements in a high-level program-
ming language), which test data values during program execution. The same
applies to the assignment of values to macro-time variables, and to the other
conditional macro expansion directives we discuss.

The macro-time IF-ELSE-ENDIF structure provides a mechanism for
either generating (once) or skipping selected statements in the macro body.
A different type of conditional macro expansion statement is illustrated in
Fig. 4.9. Figure 4.9(a) shows another definition of RDBUFF. The purpose and
function of the macro are the same as before. With this definition, however, the
programmer can specify a list of end-of-record characters. In the macro invo-
cation statement in Fig. 4.9(b), for example, there is a list (00,03,04) corre-
sponding to the parameter &EOR. Any one of these characters is to be

199

200 System Software

25 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH, &EOR

27 &EORCT SET $NITEMS (&EOR)

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

45 +LDT #4096 SET MAX LENGTH = 4096

50 $LOOP ™™D =X'&INDEV' TEST INPUT DEVICE

55 JEQ $LOOP LOOP UNTIL READY

60 RD =X'&INDEV' READ CHARACTER INTO REG A
63 &CTR SET 1

64 WHILE (&CTR LE &EORCT)

65 COMP =X’0000&EOR [&CTR] ’

70 JEQ SEXIT

71 &CTR SET &CTR+1

73 ENDW

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $LOOP HAS BEEN REACHED

90 SEXIT STX &RECLTH SAVE RECORD LENGTH
100 MEND

()

RDBUFF F2,BUFFER, LENGTH, (00,03, 04)

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

45 +LDT #4096 SET MAX LENGTH = 4096

50 $AALOOP TD =X'F2’ TEST INPUT DEVICE

55 JEQ $AALOOP LOOP UNTIL READY

60 RD =X'F2’ READ CHARACTER INTO REG A
65 COMP =X'000000"

70 JEQ $AAEXIT

65 COMP =X'000003’

70 JEQ $AAEXTT

65 COMP =X’'000004"

70 JEQ $AAEXIT

75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $AALOOP HAS BEEN REACHED

90 S$AAEXIT STX LENGTH SAVE RECORD LENGTH

(b)

Figure 4.9 Use of macro-time looping statements.

Macro Processors

interpreted as marking the end of a record. To simplify the macro definition,
the parameter &MAXLTH has been deleted; the maximum record length will
always be 4096.

The definition in Fig. 4.9(a) uses a macro-time looping statement WHILE.
The WHILE statement specifies that the following lines, until the next ENDW
statement, are to be generated repeatedly as long as a particular condition is
true. As before, the testing of this condition, and the looping, are done while
the macro is being expanded. The conditions to be tested involve macro-time
variables and arguments, not run-time data values.

The use of the WHILE-ENDW structure is illustrated on lines 63 through
73 of Fig. 4.9(a). The macro-time variable &EORCT has previously been set
(line 27) to the value %NITEMS(&EOR). %NITEMS is a macro processor
function that returns as its value the number of members in an argument list.
For example, if the argument corresponding to &EOR is (00,03,04), then
%NITEMS(&EOR) has the value 3. '

The macro-time variable &CTR is used to count the number of times the
lines following the WHILE statement have been generated. The value of
&CTR is initialized to 1 (line 63), and incremented by 1 each time through the
loop (line 71). The WHILE statement itself specifies that the macro-time loop
will continue to be executed as long as the value of &CTR is less than or equal
to the value of &EORCT. This means that the statements on lines 65 and 70
will be generated once for each member of the list corresponding to the para-
meter &EOR. The value of &CTR is used as a subscript to select the proper
member of the list for each iteration of the loop. Thus on the first iteration the
expression &EOR[&CTR] on line 65 has the value 00; on the second iteration it
has the value 03, and so on. '

Figure 4.9(b) shows the expansion of a macro invocation statement using
the definition in Fig. 4.9(a). You should examine this example carefully to be
sure you understand how the WHILE statements are handled.

The implementation of a macro-time looping statement such as WHILE is
also relatively simple. When a WHILE statement is encountered during macro
expansion, the specified Boolean expression is evaluated. If the value of this
expression is FALSE, the macro processor skips ahead in DEFTAB until it finds
the next ENDW statement, and then resumes normal macro expansion. If the
value of the Boolean expression is TRUE, the macro processor continues to
process lines from DEFTAB in the usual way until the next ENDW statement.
When the ENDW is encountered, the macro processor returns to the preceding
WHILE, re-evaluates the Boolean expression, and takes action based on the
new value of this expression as previously described.

This method of implementation does not allow for nested WHILE struc-
tures. You are encouraged to think about how such nested structures might be
supported (see Exercise 4.2.14).

201

202

System Software

4.2.4 Keyword Macro Parameters

All the macro instruction definitions we have seen thus far used positional para-
meters. That is, parameters and arguments were associated with each other
according to their positions in the macro prototype and the macro invocation
statement. With positional parameters, the programmer must be careful to
specify the arguments in the proper order. If an argument is to be omitted, the
macro invocation statement must contain a null argument (two consecutive
commas) to maintain the correct argument positions. [See, for example, the
macro invocation statement in Fig. 4.8(c).]

Positional parameters are quite suitable for most macro instructions.
However, if a macro has a large number of parameters, and only a few of these
are given values in a typical invocation, a different form of parameter specifi-
cation is more useful. (Such a macro may occur in a situation in which a large
and complex sequence of statements—perhaps even an entire operating sys-
tem—is to be generated from a macro invocation. In such cases, most of the
parameters may have acceptable default values; the macro invocation specifies
only the changes from the default set of values.) »

For example, suppose that a certain macro instruction GENER has 10 pos-
sible parameters, but in a particular invocation of the macro, only the third
and ninth parameters are to be specified. If positional parameters were used,
the macro invocation statement might look like

GENER , ,DIRECT,,,,,.3.

Using a different form of parameter specification, called keyword parame-
ters, each argument value is written with a keyword that names the corre-
sponding parameter. Arguments may appear in any order. If the third
parameter in the previous example is named &TYPE and the ninth parameter
is named &CHANNEL, the macro invocation statement would be

GENER TYPE=DIRECT, CHANNEL=3.

This statement is obviously much easier to read, and much less error-prone,
than the positional version.

Figure 4.10(a) shows a version of the RDBUFF macro definition using key-
word parameters. Except for the method of specification, the parameters are
the same as those in Fig. 4.8(a). In the macro prototype, each parameter name
is followed by an equal sign, which identifies a keyword parameter. After the
equal sign, a default value is specified for some of the parameters. The para-
meter is assumed to have this default value if its name does not appear in the
macro invocation statement. Thus the default value for the parameter
&INDEV is F1. There is no default value for the parameter &BUFADR.

25
26
27
28
30
35
38
40
42
43
47
50
55
60
63
65
70
73
75
80
85
90
95

30
35
40
42
47
50
55
60
65
70
75
80
85
90

Macro Processors

RDBUFF MACRO &INDEV=F1, &BUFADR=, &RECLTH=, &EOR=04, &MAXLTH=409¢€

IF (XEOR NE ')
&EORCK SET 1

ENDIF

CLEAR X CLEAR LOOP COUNTER

CLEAR A

IF (&EORCK EQ 1)

LDCH =X'&EOR’ SET EOR CHARACTER

RMO A,S

ENDIF

+1LDT #S&MAXLTH SET MAXIMUM RECORD LENGTH
SLOOP D =X'&INDEV’ TEST INPUT DEVICE

JEQ SLOOP LOOP UNTIL READY

RD =X'&INDEV’ READ CHARACTER INTO REG A

IF (&EORCK EQ 1)

COMPR A,S TEST FOR END OF RECORD

JEQ SEXIT EXIT LOOP IF EOR

ENDIF

STCH &BUFADR, X STORE CHARACTER IN BUFFER

TIXR T LOOP UNLESS MAXIMUM LENGTH

JLT SLOOP HAS BEEN REACHED
SEXIT STX &RECLTH SAVE RECORD LENGTH

MEND

(@

RDBUFF BUFADR=BUFFER, RECLTH=LENGTH

LEAR X CLEAR LOOP COUNTER

CLEAR A

LDCH =X'04" SET EOR CHARACTER

RMO A,S

+LDT #4096 SET MAXIMUM RECORD LENGTH
SAALOOP TD =X'F1’ TEST INPUT DEVICE

JEQ SAALOOP LOOP UNTIL READY

RD =X'F1’ READ CHARACTER INTO REG A

COMPR A,S TEST FOR END CF RECORD

JEQ SAAEXIT EXIT LOCOP IF EOR

STCH BUFFER, X STORE CHARACTER IN BUFFER

TIXR T LOOP UNLESS MAXIMUM LENGTH

JLT SAALOOP HAS BEEN REACHED
SAAEXIT STX LENGTH SAVE RECORD LENGTH

(b)

Figure 4.10 Use of keyword parameters in macro instructions.

203

204

System Software

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

47 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 $ABLOOP TD =X'F3" TEST INPUT DEVICE

55 " JEQ $ABLOOP LOOP UNTIL READY

60 RD =X'F3’ READ CHARACTER INTO REG A
75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $ABLOOP HAS BEEN REACHED

90 $ABEXIT STX LENGTH SAVE RECORD LENGTH

()
Figure 4.10 (contd)

Default values can simplify the macro definition in many cases. For exam-
ple, the macro definitions in Figs. 4.10(a) and 4.8(a) both provide for setting
the maximum record length to 4096 unless a different value is specified by the
user. The default value established in Fig. 4.10(a) takes care of this automati-
cally. In Fig. 4.8(a), an IF-ELSE-ENDIF structure is required to accomplish the
same thing.

The other parts of Fig. 4.10 contain examples of the expansion of keyword
macro invocation statements. In Fig. 4.10(b), all the default values are
accepted. In Fig. 4.10(c), the value of &INDEV is specified as F3, and the value
of &EOR is specified as null. These values override the corresponding
defaults. Note that the arguments may appear in any order in the macro invo-
cation statement. You may -want to work through these macro expansions for
yourself, concentrating on how the default values are handled.

4.3 MACRO PROCESSOR DESIGN OPTIONS

In this section we discuss some major design options for a macro processor.
The aigorithm presented in Fig. 4.5 does not work properly if a macro invoca-
tion statement appears within the body of a macro instruction. However, it is
often desirable to allow macros to be used in this way. Section 4.3.1 examines
the problems created by such macro invocation statements, and suggests some
possibilities for the solution of these problems.

Although the most common use of macro instructions is in connection
with assembler language programming, there are other possibilities.

Macro Processors

Section 4.3.2 discusses general-purpose macro processors that are not tied to
any particular language. An example of such a macro processor can be found
in Section 4.4.3. Section 4.3.3 examines the other side of this issue: the integra-
tion of a macro processor with a particular assembler or compiler. We discuss
the possibilities for cooperation between the macro processor and the lan-
guage translator, and briefly indicate some of the potential benefits and prob-
lems of such integration.

4.3.1 Recursive Macro Expansion

In Fig. 4.3 we presented an example of the definition of one macro instruction
by another. We have not, however, dealt with the invocation of one macro by
another. Figure 4.11 shows an example of such a use of macros. The definition

of RDBUFF in Fig. 4.11(a) is essentially the same as the one in Fig. 4.1. The

order of the parameters has been changed to make the point of the example
clearer. In this case, however, we have assumed that a related macro instruc-
tion (RDCHAR) already exists. The purpose of RDCHAR is to read one char-
acter from a specified device into register A, taking care of the necessary
test-and-wait loop. The definition of this macro appears in Fig. 4.11(b). It is
convenient to use a macro like RDCHAR in the definition of RDBUFF so that
the programmer who is defining RDBUFF need not worry about the details of
device access and control. (RDCHAR might be written at a different time, or
even by a different programmer.) The advantages of using RDCHAR in this
way would be even greater on a more complex machine, where the code to
read a single character might be longer and more complicated than our simple
three-line version.

Unfortunately, the macro processor design we have discussed previously
cannot handle such invocations of macros within macros. For example, sup-
pose that the algorithm of Fig. 4.5 were applied to the macro invocation state-
ment in Fig. 4.11(c). The procedure EXPAND would be called when the macro
was recognized. The arguments from the macro invocation would be entered
into ARGTAB as follows:

Parameter Value

1 BUFFER

2 LENGTH

3 Fl

4 (unused)

205

206

System Software

10
15
20
25
30
35
40

50
65
70
75
80
85
90
95

10
15
20
25
30
35
40

RDBUFF

SLOOP

SEXIT

RDCHAR

MACRO &RUFADR, &RECLTH, & INDEV

MACRO TO READ RECORD INTO BUFFER

CLEAR X CLEAR LOCP COUNTER

CLEAR A

CLEAR S

LDT #4096 SET MAXTMUM RECORD LENGTH
RDCHAR &INDEV READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ SEXIT EXIT LOOP IF ECR

STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT $LOOP HAS BEEN REACHED

STX &RECLTH SAVE RECORD LENGTH

MEND
(a)

MACRO &IN

MACRO TO READ CHARACTER INTO REGISTER A

™™D =X'&IN’ TEST INPUT DEVICE
JEQ *-3 LOOP UNTIL READY
RD =X"'&IN’ READ CHARACTER
MEND

(b)

RDBUFF BUFFER, LENGTH, F1

(c)

Figure 4.11 Example of nested macro invocation.

The Boolean variable EXPANDING would be set to TRUE, and expansion of
the macro invocation statement would begin. The processing would proceed
normally until line 50, which contains a statement invoking RDCHAR. At that
point, PROCESSLINE would call EXPAND again. This time, ARGTAB would
look like

Parameter Value

1 Fl
2 (unused)

Macro Processors

The expansion of RDCHAR would also proceed normally. At the end of this
expansion, however, a problem would appear. When the end of the definition
of RDCHAR was recognized, EXPANDING would be set to FALSE. Thus the
macro processor would “forget” that it had been in the middle of expanding a
macro when it encountered the RDCHAR statement. In addition, the argu-
ments from the original macro invocation (RDBUFF) would be lost because
the values in ARGTAB were overwritten with the arguments from the
invocation of RDCHAR. .

The cause of these difficulties is the recursive call of the procedure
EXPAND. When the RDBUFF macro invocation is encountered, EXPAND is
called. Later, it calls PROCESSLINE for line 50, which results in another call to
FXPAND before a return is made from the original call. A similar problem
would occur with PROCESSLINE since this procedure too would be called
recursively. For example, there might be confusion about whether the return
from PROCESSLINE should be made to the main (outermost) loop of the
macro processor logic or to the loop within EXPAND.

These problems are not difficult to solve if the macro processor is being
written in a programming language (such as Pascal or C) that allows recursive
calls. The compiler would be sure that previous values of any variables
declared within a procedure were saved when that procedure was called
recursively. It would also take care of other details involving return from the
procedure. (In Chapter 5 we consider in detail how such recursive calls are
handled by a compiler.)

If a" programming language that supports recursion is not available, the
programmer must take care of handling such items as return addresses and
values of local variables. in such a case, PROCESSLINE and EXPAND would
probably not be procedures at all. Instead, the same logic would be incor-
porated into a looping structure, with data values being saved on a stack.

The algorithm for implementing the recursive macro call is same as the
algorithm for a one-pass macro processor (Fig. 4.5) except the EXPAND and
GETLINE procedures. The EXPAND and GETLINE procedures are as follows
(Fig. 4.12).

procedure EXPAND

level = 0; SP = —1
begin
set S(SP + N + 2) = SP

set SP = SP + N + 2
set S(SP + 1) = DEFTAB index from NAMTAB
set up macro call argument list array in
S(SP + 2)...S(SP + N + 1) where N = total number of
arguments
while not end of macro detinition and Level ! = 0 do

207

208

System Software

begin
GETLINE
* PROCESSLINE
end {while}
set N = SP — S(SP) — 2
set SP = S(SP)
end {EXPAND}

procedure GETLINE
begin if SP! = —1 then
begin

increment DEFTAB pointer to next entry
set S(SP + 1) = S(SP + 1) + 1
get the line from DEFTAB with the pointer

S(SP + 1)
substitute arguments from macro call
S(SP + 2)...S(SP + N + 1)
end
else

read next line from input file

end {GETLINE}

DEFTAB
| {RDBUFF &BUFADR, &RECLTH, &INDEV
10 CLEAR X
RDBUFF | | CLEAR A
\ CLEAR S
\\ +LDT #4096
RDCHAR) $LOOP RDCHAR ?3
\ COMPR A, S
39\ \ JEQ $EXIT
STCH 21, X
\\ TIXR T
* JLT $LOOP
$EXIT STX 22
MEND
30
RDCHAR MACRO &IN
TD = X'?1
JEQ * -3
RD = x'?1°
MEND

Figure 4.12 Recursive macro expansion for the example in Fig. 4.11.

Macro Processors

1. sp = -1
2. Call RDBUFF BUFFER, LENGTH, F1
Ssp =1
S(1) -1 Macros expanded
S(2) 10+1+1+1+1+1 CLEAR X
S(3) CLEAR A
S(4) BUFFER CLEAR S
S(5) LENGTH +LDT #4096
S(6) Fl
3. 8P =7
S(1) -1 ™D = X'F1"
S(2) 15 JEQ * -3
S(3) RD = X'F1'
S(4) BUFFER N = SP - S(SP) — 2
S(5) LENGTH — 7 -1 -2
5(6) Fl .
S(7) 1
SP= S(SP)=1
S(8) 30+41+1+1+1 (SP)
S(9)
S(10) Fl
4. sp =1
S(1) -1 COMPR A, S
S(2) |15+1+1+1+1+1+1 STCH BUFFER, X
S(3) TIXR T
S(4) || BUFFER JLT $LOOP
S(5) LENGTH SEXIT STX LENGTH
s(6) Fl N =1+1-2
=0

SP = S(SP) = S(1) =1

Figure 4.12 (contd)

4.3.2 General-Purpose Macro Processors

The most common use of macro processors is as an aid to assembler language
programming. Often such macro processors are combined with, or closely
related to, the assembler. Macro processors have also been developed for some
high-level programming languages. (One example of this kind of macro proces-
sor is discussed in Section 4.4.2.) These special-purpose macro processors are
similar in general function and approach; however, the details differ from
language to language. In this section we discuss general-purpose macro proces-
sors. These are not dependent on any particular programming language, but
can be used with a variety of different languages.

209

210

System Software

The advantages of such a general-purpose approach to macro processing
are obvious. The programmer does not need to learn about a different macro
facility for each compiler or assembler language, so much of the time and
expense involved in training are eliminated. The costs involved in producing a
general-purpose macro processor are somewhat greater than those for devel-
oping a language-specific processor. However, this expense does not need to
be repeated for each language; the result is a substantial overall saving in soft-
ware development cost. Similar savings in software maintenance effort should
also be realized. Over a period of years, these maintenance costs may be even
more significant than the original cost for software development.

In spite of the advantages noted, there are still relatively few general-
purpose macro processors. One of the reasons for this situation is the large
number of details that must be dealt with in a real programming language. A
special-purpose macro processor can have these details built into its logic and
structure. A general-purpose facility, on the other hand, must provide some
way for a user to define the specific set of rules to be followed.

In a typical programming language, there are several situations in which
normal macro parameter substitution should not occur. For example, com-
ments should usually be ignored by a macro processor (at least in scanning for
parameters). However, each programming language has its own methods for
identifying comments. Some languages (such as Pascal and C) use special
characters to mark the start and end of a comment. Others (such as Ada) use a
special character to mark only the start of a comment; the comment is auto-
matically terminated at the end of the source line. Som« languages (such as
FORTRAN) use a special symbol to flag an entire line as a comment. In most
assembler languages, any characters on a line following the end of the instruc-
tion operand field are automatically taken as comments. Sometimes comments
are recognized partly by their position in the source line.

Another difference between programming languages is related to their
facilities for grouping together terms, expressions, or statements. A general-
purpose macro processor may need to take these groupings into account in
scanning the source statements. Some languages use keywords such as begin
and end for grouping statements. Others use special characters such as { and }.
Many languages use parentheses for grouping terms and expressions.
However, the rules for doing this may vary from one language to another.

A more general problem involves the tokens of the programming
language—for example, identifiers, constants, operators, and keywords.
Languages differ substantially in their restrictions on the length of identifiers
and the rules for the formation of constants. Sometimes the rules for such
tokens are different in certain parts of the program (for example, within a
FORMAT statement in FORTRAN or a DATA DIVISION in COBOL). In some

Macro Processors

languages, there are multiple-character operators such as ** in FORTRAN and
:= in Pascal. Problems may arise if these are treated by a macro processor as
two separate characters rather than as a single operator. Even the arrangement
of the source statements in the input file may create difficulties. The macro
processor must be concerned with whether or not blanks are significant, with
the way statements are continued from one line to another, and with special
statement formatting conventions such as those found in FORTRAN and
COBOL.

Another potential problem with general-purpose macro processors
involves the syntax used for macro definitions and macro invocation state-
ments. With most special-purpose macro processors, macro invocations are
very similar in form to statements in the source programming language. (For
example, the invocation of RDBUFF in Fig. 4.1 has the same form as a SIC
assembler language statement.) This similarity of form tends to make the
source program easier to write and read. However, it is difficult to achieve
with a general-purpose macro processor that is to be used with programming
languages having different basic statement forms.

In Section 4.4.3 we briefly describe one example of a general-purpose
macro processor. Other discussions of general-purpose macro processors and
macro processors for high-level languages can be found in Cole (1981),
Kernighan and Plauger (1976), Brown (1974), and Campbell-Kelley (1973).

4.3.3 Macro Processing within Language Translators

The macro processors that we have discussed so far might be called preproces-
sors. That is, they process macro definitions and expand macro invocations,
producing an expanded version of the source program. This expanded pro-
gram is then used as input to an assembler or compiler. In this section we dis-
cuss an alternative: combining the macro processing functions with the
language translator itself.

The simplest method of achieving this sort of combination is a line-by-linc
macro processor. Using this approach, the macro processor reads the source
program statements and performs all of its functions as previously described.
However, the output lines are passed to the language translator as they are
generated (one at a time), instead of being written to an expanded source file.
Thus the macro processor operates as a sort of input routine for the assembler
or compiler.

This line-by-line approach has several advantages. It avoids making an
extra pass over the source program (writing and then reading the expanded
source file), so it can be more efficient than using a macro preprocessor. Some

211

212

System Seftware

of the data structures required by the macro processor and the language trans-
lator can be combined. For example, OPTAB in an assembler and NAMTAB in
the macro processor could be implemented in the same table. In addition,
many utility subroutines and functions can be used by both the language
translator and the macro processor. These include such operations as scanning
input lines, searching tables, and converting numeric values from external to
internal representations. A line-by-line macro processor also makes it easier to
give diagnostic messages that are related to the source statement containing
the error (i.e., the macro invocation statement). With a macro preprocessor,
such an error might be detected only in relation to some statement in the
macro expansion. The programmer would then need to backtrack to discover
the original source of trouble. :

Although a line-by-line macro processor may use some of the same utility
routines as the language translator, the functions of macro processing and pro-
gram translation are still relatively independent. The main form of communi-
cation between the two functions is the passing of source statements from one
to the other. It is possible to have even closer cooperation between the macro
processor and the assembler or compiler. Such a scheme can be thought of as a
language translator with an integrated macro processor.

An integrated macro processor can potentially make use of any informa-
tion about the source program that is extracted by the language translator. The
actual degree of integration varies considerably from one system to another.
At a relatively simple level of cooperation, the macro processor may use the
results of such translator operations as scanning for symbnls, constants, etc.
Such operations must be performed by the assembler or compiler in any case;
the macro processor can simply use the results without being involved in such
details as multiple-character operators, continuation lines, and the rules for
token formation. This is particularly useful when the rules for such details
vary from one part of the program to another (for example, within FORMAT
statements and character string constants in FORTRAN).

The sort of token scan just mentioned is conceptually quite simple.
However, many real programming languages have certain characteristics that
create unpleasant difficulties. One classic example is the FORTRAN statement

DO 100 T = 1,20

This is a DO statement: DO is recognized as a keyword, 100 as a statement
number, 1 as a variable name, etc. However, blanks are not significant in FOR-
TRAN statements (except within character string constants). Thus the similar
statement

DO 100 I =1

Macro Processors

has a quite different meaning. This is an assignment statement that gives the
vawae 1 to the variable DO100I. Thus the proper interpretation of the charac-
ters DO, 100, etc., cannot be decided until the rest of the statement is exam-
ined. Such internretations would be very important if, for example, a macro
involved substituting for the variable name I. A FORTRAN compiler must be
able to recognize and handle situations such as this. However, it would be
very difficult for an ordinary macro processor (not integrated with a compiler)
to do so. Such a macro processor would be concerned only with character
strings, not with the interpretation of source statements.

With an even closer degree of cooperation, an integrated macro processor
can support macro instructions that depend upon the context in which they
occur. For example, a macro could specify a substitution to be applied only to
variables or constants of a certain type, or only to variables appearing as loop
indices in DO statements. The expansion of a macro could also depend upon a
variety of characteristics of its arguments.

There are, of course, disadvantages tc integrated and line-by-line macro
processors. They must be specially designed and written to work with a par-
ticular implementation of an assembler or compiler (not just with a particular
programming language). The costs of macro processor development must
therefore be added to the cost of the language translator, which results in a
more expensive piece of software. In addition, the assembler or compiler wili
be considerably larger and more complex than it would be if a macro pre-
processor were used. The size may be a problem if the translator is to run on a
computer with limited memory. In any case, the additional complexity will
add to the overhead of language translation. (For example, some assemblers
with integrated macro processors consume more time per line of source code
than do some compilers on the same computing system.) Decisions about
what type of macro processor to use should be based on considerations such
as the frequency and complexity of macro processing that is anticipated, and

other characteristics of the computing environment.
~

4.4 IMPLEMENTATION EXAMPLES

In this section we briefly present three examples of actual macro processors.
As before, we do not attempt to cover all the characteristics of each system.
Instead, we focus on the more interesting or unusual features. The first exam-
ple is a macro processor that is integrated with the MASM assembler (see also
Section 2.5.1). The second is a macro facility that is part of the ANSI C pre-
processor. The third example is a general-purpose macro processor that is not
associated with any particular programming language.

213

214

System Software

4.4.1 MASM Macro Processor

This section describes some of the macro processing features of the Microsoft
MASM assembler. Further information about MASM can be found in
Barkakati (1992).

The macro processor of MASM is integrated with Pass 1 of the assembler.
It supports all of the main macro processor functions that we have discussed,
including the definition and invocation of macro instructions within macros.
Macros may be redefined during a program, without causing an error. The
new definition of the macro simply replaces the first one. However, this prac-
tice can be very confusing to a person reading the program—it should proba-
bly be avoided.

One of the main differences between the MASM macro processor and the
one we discussed for SIC lies in the nature of the conditional macro expansion
statements. MASM calls these conditional assembly statements. Although the
main use of these statements is in connection with macro instructions, they
can also appear outside of macros.

Figure 4.13 illustrates some of the MASM macro and conditional assembly
statements. The macro instruction defined in Fig. 4.13(a) computes the
absolute difference between the values of its first two parameters. These para-
meters may be either words or doublewords. If they are doublewords, the
third parameter has the value E and the calculation uses the doubleword reg-
ister EAX. If the first two parameters are words, the third parameter is omit-
ted. In that case, the calculation uses the word-length portion of the register,
which is designated by AX.

The MACRO header on line 1 gives the name of the macro and its parame-
ters. Notice that macro parameters in MASM need not begin with & or any
other special character. The end of the macro is marked by the ENDM on
line 15.

Line 2 declares that EXIT is a local label. When the macro is expanded,
each local label is replaced by a unique name. MASM generates these unique
names in the form ??n, where 7 is a hexadecimal number in the range 0000 to
FFFE. See the macro expansions in Fig. 4.13(b) and (c) for an example of this.

The IFNB on line 3 evaluates to “true” if its operand is not blank. If the
parameter SIZE is not blank (that is, if it is present in the macro invocation),
lines 4 through 8 are processed. Otherwise, these lines are skipped. Lines 4
through 8 contain a nested conditional statement. The IFDIF on line 4 is true if
the string represented by SIZE is different from the string E. In that case, lines
5 through 7 are processed. Line 5 generates a comment that will appear on the
assembly listing. The .ERR on line 6 signals to MASM that an error has been
detected, and the EXITM directs MASM to terminate the expansion of the
macro. Figure 4.13(d) illustrates the result.

W oo JOoO U d Wik

ABSDIF

??20000:

??20001:

MACRO
LOCAL
IFNB

IFDIF

Macro Processors

OP1,0P2, SIZE

EXIT
<SIZE> 77 IF SIZE IS NOT BLANK
<SIZE>, <E> HY THEN IT MUST BE E

> ERROR -- SIZE MUST BE E OR BLANK

.ERR

EXITM
ENDIF
ENDIF

ABSDIF

MOV

JNS

ABSDIF

3

;; END OF IFDIF

;; END OF IFNB
SIZE&AX,OP1 ; COMPUTE ABSOLUTE DIFFERENCE
SIZE&AX,OP2 ;; SUBTRACT OP2 FROM OP1
EXIT ;; EXIT IF RESULT GE 0
SIZE&AX H OTHERWISE CHANGE SIGN

(a)

; COMPUTE ABSOLUTE DIFFERENCE

(b)

EAX,M ; COMPUTE ABSOLUTE DIFFERENCE
EAX,N

220001

EAX

(c)

P,Q0.X

; ERROR -- SIZE MUST BE E OR BLANK

(d)

Figure 4.13 Examples of MASM macro and conditional statements.

215

216

System Software

The & on line 10 is a concatenation operator, used to combine the value of
the parameter SIZE with the string AX. If SIZE has the value E, the result is
EAX. If SIZE is blank, the result is simply AX. [Compare the macro expansions
in Fig. 4.13(b) and (c).]

Notice the difference between the comments on lines 9 and 10. The com-
ment on line 9, which begins with ;; , is a macro comment. It serves only as doc-
umentation for the macro definition; it is ignored when the macro is
expended. The comment on line 10, which begins with ;, is an ordinary assem-
bler language comment. It is included as part of the macro expansion.

Figure 4.14(a) illustrates one of the iteration statements available in
MASM. The IRP on line 2 sets the macro-time variable S to a sequence of val-
ues specified in < ... >. The statements between the IRP and the matching
ENDM on line 4 are generated once for each such value of S. Figure 4.14(b)
shows an example of the resulting macro expansion.

4.4.2 ANSI C Macro Language

This section describes some of the macro processing features of the ANSI C
programming language. Section 5.5.1 discusses the structure of a typical
compiler and preprocessor that implement these features. Further
information can be found in Schildt (1990), as well as in many C language ref-
erence books.

1 NODE MACRO NAME
2 IRP S,<'LEFT’, 'DATA’, 'RIGHT' >
3 NAME&S DV 0
4 ENDM :; END OF IRP
5 ENDM ;; END OF MACRO
(a)
NODE X
XLEFT Dw 0
XDATA DN 0
XRIGHT D 0
(b)

Figure 4.14 Example of MASM iteration statement.

Macro Processors

In the ANSI C language, definitions and invocations of macros are handled
by a preprocessor. This preprocessor is generally not integrated with the rest
of the compiler. Its operation is similar to the macro processor we discussed in
Section 4.1. The preprocessor also performs a number of other functions, some
of which are discussed in Section 5.5.1.

Here are two simple (and commonly used) examples of ANSI C macro
definitions.

#define NULL 0
#define EOF (—1)

After these definitions appear in the program, every occurrence of NULL will
be replaced by 0, and every occurrence of EOF will be replaced by (-1). It is
also possible to use macros like this to make limited changes in the syntax of
the language. For example, after defining the macro

#define EQ ==
a programmer could write
while (I EQ O)...
The macro processor would convert this into
~while (I == 0)...

which is the correct C syntax. This could help avoid the common C error of
writing = in place of ==. (However, many people consider such syntactic mod-
ifications to be a poor programming practice.)

ANSI C macros can also be defined with parameters. Consider, for example,
the macro definition

#define ABSDIFF(X,Y) ((X)}) > (Y) ? (X) — (Y) : (Y) — (X))

In this case, the macro name is ABSDIFF; the parameters are named X and Y.
The body of the macro makes use of a special C language conditional expres-
sion. If the condition (X) > (Y) is true, the value of this expression is the first
alternative specified, (X) — (Y). If the condition is false, the value of the expres-
sion is the second alternative, (Y) — (X).

A macro invocation consists of the name of the macro followed by a paren-
thesized list of parameters separated by commas. When the macro is

217

218

System Software

expanded, each occurrence of a macro parameter is replaced by the corre-
sponding argument. For example,

ABSDIFF(I+1, J-5)

would be converted by the macro processor into
((I+1) > (J—=5) ? (I+1) — (J—5) : (J—5) — (I+1))

Notice the similarity between this macro invocation and a function call.
Clearly, we could write a function ABSDIFF to perform this same operation.
However, the macro is more efficient, because the amount of computation
required to compute the absolute difference is quite small—much less than the
overhead of calling a function. The macro version can also be used with differ-
ent types of data. For example, we could invoke the macro as

ABSDIFF (I, 3.14159)

or
ABSDIFF(‘D’, 'A’)

Because C macros are handled by a preprocessor, it is necessary to be very
careful in writing macro definitions with parameters. The macro processor
simply makes string substitutions, without considering the syntax of the C
language. For example, if we had written the definition of ABSDIFF as

#define ABSDIFF(X,Y) X >Y ? X—Y : Y—X
the macro invocation
ABSDIFF(3 + 1, 10 — 8)
would be expanded into
3+41>10-8?3+1-10—-8:10—-8—-3+1

which would not produce the intended result. (The first alternative in this case
has the value ~14 instead of 2, as it should be.)

In ANSI C, parameter substitutions are not performed within quoted
strings. For example, consider the macro definition

#define DISPLAY(EXPR) printf(”EXPR = %d\n”, EXPR)

Macro Processors

The macro invocation
DISPLAY (I*J+1)
would be expanded into
printf ("EXPR = %d\n”, I*J+1l)
(However, some C compilers would perform the substitution for EXPR inside
the quoted string, possibly with a warning message to the programmer.)
To avoid this problem, ANSI C provides a special “stringizing” operator #.
When the name of a macro parameter is preceded by #, argument substitution

is performed in the usual way. After the substitution, however, the resulting
string is enclosed in quotes. For example, if we define

#define DISPLAY(EXPR) printf (#EXPR "= %d\n”, EXPR)
then the invocation

DISPLAY (I*J+1)
would be expanded into

printf ("I*J+1” "= %d\n”, EXPR)

Macros in ANSI C may contain definitions or invocations of other macros.
After a macro is expanded, the macro processor rescans the text that has been
generated, looking for more macro definitions or invocations. For example, the
invocation

DISPLAY (ABSDIFF (3, 8))
would be expanded into

printf ("ABSDIFF(3,8)" "= %d\n”, ABSDIFF(3,8))
After rescanning, this would become

printf ("ABSDIFF(3,8)” "= %d\n”",
((3) > (8) 2 (3) —(8) : (8) —(3))
(Notice that the ABSDIFF within the quoted string is not treated as a macro
invocation.) When executed, this statement would produce the output

219

220

Systemn Software

ABSDIFF(3,8) = 5

The rescanning process behaves somewhat differently from the macro
processing we discussed earlier in this chapter. If the body of a macro con-
tains a token that happens to match the name of the macro, this token is not
replaced during rescanning. Thus a macro cannot invoke (or define) itself
recursively.

The ANSI C preprocessor also provides conditional compilation state-
ments. These statements can be used to be sure that a macro (or other name) is
defined at least once. For example, in the sequence

#ifndef BUFFER_SIZE
#define BUFFER_SIZE 1024
#endif

the #define will be processed only if BUFFER_SIZE has not already becn
defined.

Conditionals are also often used to control the inclusion of debugging
statemerits in a program. Consider, for example, the sequence

#define DEBRUG 1

#if DEBUG == 1
printf(...) /* debugging output */
#endif

In this case, the printf statement will be included in the output from the pre-
processor (and therefore compiled into the program). If the first line were
changed to

#define DEBUG 0

the printf would not be included in the program. The same thing could also be
accomplished by writing

#ifdef DEBUG
printf(...) /* debugging output */
#endif

In this case, the printf would be included if a #define statement for DEBUG
appeared in the source program.

Macro Processors

4.4.3 The ELENA Macro Processor*

This section describes some of the features of the ELENA general-purpose
macro processor. ELENA was developed as a research tool, not as a commer-
cial software product. However, the same design and implementation tech-
niques could be used in‘developing other general-purpose macro processors.
Further information about ELENA can be found in Barcucci and Pelacani
(1984).

Macro definitions in ELENA are composed of a header and a body, as with
most macro processors. However, the header is not required to have any spe-
cial form. It consists of a sequence of keywords and parameter markers (which
are identified by the special character %). The only restriction is that at least
one of the first two tokens in a macro header must be a keyword, not a para-
meter marker. A macro invocation is a sequence of tokens that matches the
macro header. For example, a macro with the header

o
o
il
o

2 + %3
could be invoked as
ALPHA = BETA + GAMMA
and a macro with header
ADD %1 TO THE VALUE OF %2
could be invoked as 7

ADD 10 TO THE VALUE OF INDEX

Figure 4.15 illustrates how ELENA could be used with different languages.
Consider the macro header shown in Fig. 4.15(a). If this macro is to be used
with the C language, its body might be defined as shown in Fig. 4.15(b). An
example of a macro invocation and expansion using this body appears in
Fig. 4.15(c).

On the other hand, suppose that the macro is to be used in an x86 assem-
bler language program. In that case, the body might be defined as shown in
Fig. 4.15(d). An example of a macro invocation and expansion using this body
appears in Fig. 4.15(e). Notice that in this expansion the label &STOR is
changed to &STOR0001. The character & identifies &STOR as a local label
within the macro definition. The macro processor appends a numeric value to
create unique labels each time the macro is expanded.

*Adapted from “A Software Development System Based on a Macroprocessor” by Elena Barcucci
and Gianluca Pelacani, from Software: Practice and Experience, Vol. 14, pp. 519-531 (June 1984).
©John Wiley & Sons Ltd.

221

222 System Software

%1 := ABSDIFF (%2, %3)

(@)
g1 = (%2) > (%3) 2 (%2) - (%3) : (%3) - (%2)
(b)
Z := ABSDIFF(X,Y)
Z=(X) > (¥Y)? (X) - (Y) : (Y) - (X)
(c)
MOV EAX, %2
SUB EAX, %3
JNS &STOR
NEG EAX
&STOR MOV EAX, %1
(@
Z := ABSDIFF(X,Y)
MOV EAX, X
SUB EAX,Y
JNS STOR0001
NEG EAX
STOR0001 MOV EAX,Z

(e)

Figure 4.15 Examples of ELENA macro definition and invocation.

ELENA also provides macro-time variables and macro-time instructions
that can be used to control the macro expansion. Consider the macro header
shown in Fig. 4.16(a) and the associated body in Fig. 4.16(b). The .SET state-
ment on the first line of the macro body sets the macro-time variable .LAA to 1.
The next line is a statement to be generated as part of the macro expansion.
After this line is generated, the following .SET statement adds 1 to the value of
.LAA. If this new value is less than or equal to the value of the second parameter,

Macro Processors

ADD %1 TO THE FIRST %2 ELEMENTS OF V
(a)
.SET .LAA =1
.E V(.LAA) = V(.LAA) + %1
.SET .LAA = .LAA + 1

.IF .LAA LE %2 .JUMP .E

(b)

ADD 5 TO THE FIRST 3 ELEMENTS OF V

V(1) = V(1) + 5
vV(2) =V(2) +5
V(3) = V(3) + 5

(c)

Figure 4.16 Example of ELENA macro-time instructions.

the .IF macro-time instruction causes the macro processor to jump back to the
line with the macro-time label .E. Figure 4.16(c) shows an example of a macro
invocation and expansion using this body.

The macro-time instructions in ELENA represent a different type of
approach to conditional macro expansion. The .IF statement in Fig. 4.16(b) is a
macro-time conditional “go to” statement. In the SIC macro language, we
would have written this definition using the WHILE-ENDW structure, which
is a higher-level macro-time instruction.

The ELENA macro processor uses a macro definition table that is similar to
the one we discussed for SIC. However, the process of matching a macro invo-
cation with a macro header is more complicated. Notice that there is no single
token that constitutes the macro “name.” Instead, the macro is identified by
the sequence of keywords that appear in its header. Consider, for example, the
two macro headers

ADD %1 TO %2
ADD %1 TO THE FIRST ELEMENT OF %2

223

224

System Software

Furthermore, it is not even cleai from a macro invocation statement which
tokens are keywords and which are parameters. A sequence of tokens like

DISPLAY TABLE
could be an invocation of a macro with header
DISPLAY %1

(where the parameter specifies what to display). On the other hand, it could
also be an invocation of a macro with header

%1 TABLE

(where the parameter specifies what operation to perform on TABLE). Notice
that it is not possible for both DISPLAY and TABLE to be parameters, because at
least one of the first two tokens in a macro header is required to be a keyword.

ELENA deals with this problem by constructing an index of all macro
headers according to the keywords in the first two tokens of the header.
Potential macro invocations are compared against all headers with keywords
that match at least one of their first two tokens. For example, the sequence

A SUM B,C

would be compared against all macro headers in which the first token is A or
the second token is SUM.

During this process, it is possible that a sequence of tokens could match
more than one macro header. For example, the sequence

A=B+1

might match both of the headers
%l = %2 + %3

and

%1

%2 + 1

In this situation, ELENA selects the header with the fewest parameters (i.e.,
the second of the two headers just mentioned). If there are two or more match-
ing headers with the same number of parameters, the most recently defined
macro is selected.

Macro Processors

EXERCISES

Section 4.1

10.

Apply the algorithm in Fig. 4.5 to process the source program in
Fig. 4.1; the results should be the same as shown in Fig. 4.2.

Using the methods outlined in Chapter 8, develop a modular design
for a one-pass macro processor.

. Macro invocation statements are a part of the source program. In

many cases, the programmer may not be concerned with the state-
ments in the macro expansion. How could the macro processor and
assembler cooperate to list only the macro invocation, and not the
expanded version?

Suppose we want macro definitions to appear as a part of the assem-
bly listing. How could the macro processor and the assembler
accomplish this?

In most cases, character strings that occur in comments should not be
replaced by macro arguments, even if they happen to match a macro
parameter. How could parameter substitution in comments be
prevented?

How should a programmer decide whether to use a macro or a sub-
routine to accomplish a given logical function?

Suppose that a certain logical task must be performed at 10 different
places in an assembler language program. This task could be imple-
mented either as a macro or as a subroutine. Describe a situation
where using a macro would take less central memory than using a
subroutine.

Some macros simply expand into instructions that call a subroutine.
What are the advantages of this approach, as compared to using
either a “pure” macro or a “pure” subroutine?

. Write an algorithm for a two-pass macro processor in which all

macro definitions are processed in the first pass, and all macro invo-
cations are expanded in the second pass. You do not need to allow
for macro definitions or invocations within macros.

Modify the algorithm in Fig. 4.5 to allow macro definitions to be
retrieved from a library if they are not specified by the programmer.

225

226

System Software

11. Suggest appropriate ways of organizing and accessing the tables
DEFTAB and NAMTAB,

12. Suppose that the occurrences of macro parameters in DEFTAB were
not replaced by the positional notation ?n. What changes would be
required in the macro processor algorithm of Fig. 4.5?

13. Suppose that we have a two-pass macroassembler—that is, a one-
pass macro processor built into Pass 1 of a two-pass assembler. The
macro processor uses the general scheme described in Section 4.1.

a. Suppose that we want the programmer to be able to invoke
macros without having to include the macro definitions in the
source program. For example, a programmer might simply write
a RDBUFF statement in his or her program—the macro processor
would automatically retrieve the definition of RDBUFF from a
standard macro library. Briefly describe how this feature could be
implemented efficiently.

b. Suppose that macros are not allowed to have the same name as
machine instructions. For example, if the programmer tries to
define a macro named CLEAR, the macroassembler should give
an error message (because CLEAR is a SIC/XE machine instruc-
tion). Describe how this restriction could be implemented.

c. Now suppose that we do want to allow macros to have the same
name as machine instructions. For example, if the programmer
defines a macro named CLEAR, then any CLEAR statements in
the program being assembled should be expanded as macro invo-
cations. If the programmer does not define a macro named
CLEAR, then any CLEAR statements should be assembled as
machine instructions. Describe how this could be implemented.

d. Suppose, as in part (c), that macros are allowed to have the same
name as machine instructions. Suppose that we want to have the
definitions of such macros retrieved automatically from a macro
library, as in part (a). What problems arise? How might you solve
these problems?

Section 4.2

1. The macro definitions in Fig. 4.1 contain several statements in which
macro parameters are concatenated with other characters (for exam-
ple, lines 50 and 75). Why was it not necessary to use concatenation
operators in these statements?

»

Macro Processors

Modify the algorithm in Fig. 4.5 to include the handling of concate-
nation operators.

Modify the algorithm in Fig. 4.5 to include the generation of unique
labels within macro expansions.

Suppose that we want to allow labels within macro expansions without
requiring them to have any special form (such as beginning with $).
Each such label would be considered to be defined only within the
macro expansion in which it occurs; this would eliminate the problem
caused by duplicate labels. How could the macro processor and the
assembler work together to allow this?

What is the most important difference between the following two
sequences of statements?

a. LDA ALPHA
COMP #0
JEQ SKIP
LDA #3
STA BETA
SKIP
b. IF (&ALPHA NE 0)
&BETA SET 3
ENDIF

Expand the following macro invocation statements, using the macro
definition in Fig. 4.8(a):

RDBUFF F1,BUFFER, LENGTH, 00,1024
b. LOOP RDBUFF F2,BUFFER, LTH

Suppose that you have a simple one-pass macro processor like the
one described in Section 4.1. Now you want to add a conditional
macro expansion statement IFDEF to the macro processor. The
following example illustrates the use of IFDEF:

IFDEF ALPHA

ENDIF

227

228

System Software

The statements between IFDEF and ENDIF are to be generated as
part of the macro expansion if (and only if) the label ALPHA is
defined somewhere in the assembly language program being
processed. (It is not necessary that the definition of ALPHA appear
before the macro invocation whose expansion contains the IFDEF.)
Notice that ALPHA is an ordinary label, not a macro-time variable.

What changes would you have to make to the macro processor in
order to implement IFDEF? Explain how your new macro processor
would handle the IFDEE... ENDIF conditional statements.

. Suppose that you have a simple one-pass macro processor like the

one described in Section 4.1. Now you want to add a built-in func-
tion named %SIZEOF to the macro processor. This function can be
applied to macro parameters, and returns the number of bytes occu-
pied by the corresponding argument. Consider, for example, the
following program:

P8 START 0
MOVE MACRO &FROM, &TO
&LENGTH SET %SIZEOF (&FROM)
IF (&LENGTH EQ 1)
LDCH &FROM
STCH &TO
ELSE
LDX #&LENGTH
LDS #FROM
Lor #TO
JSUB MOVERTN
ENDIF
MEND
FIRST MOVE A,B
MOVE C,D
RSUB
A RESB 1
B RESB 1
C RESB 500
D RESB 500
END

In the first invocation of MOVE, %SIZEOF(A) returns 1; in the sec-
ond, %SIZEOF(C) returns 500. Thus the macro invocations would be
expanded as follows:

10.
11.

12.

Macro Processors

MOVE A,B MOVE C,D

LDCH A LDX #500

STCH B LDS #C
LDT #D

JSUB MOVERTN

What changes would you have to make in the macro processor to
implement the function %SIZEOF? Explain how your new macro
processor would work when processing the program shown above.

Modify the algorithm in Fig. 4.5 to include SET statements and the
IF-ELSE-ENDIF structure. You do not need to allow for nested IFs.
Modify your answer to Exercise 9 to allow nested IFs.
What is the most important difference between the following two
control structures?
a. LDT #8
CLEAR X
LOOP
TIXR T
JLT LOOP
b. &CTR SET 0
WHILE (&CTR LT 8)
&CTR SET &CTR+1
ENDW
Using the definition in Fig. 4.9(a), expand the following macro invo-

cation statements:

RDBUFF F1,BUFFER, LENGTH, (04,12)
b. LABEL RDBUFF F1,BUFFER, LENGTH, 00

C. RDBUFF F1,BUFFER, LENGTH

229

